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We present a perturbation theory of static kink solutions of discrete Klein-Gordon chains. The unperturbed
solutions correspond to the kinks of the adjoint partial differential equation. The perturbation theory is based
on a reformulation of the discrete chain problem into a partial differential equation with spatially modulated
mass density. The first-order corrections to the kink solutions are obtained analytically and are shown to agree
with exact numerical results. We use these findings to reconsider the problem of calculating the Peierls-
Nabarro barrier.@S1063-651X~96!08308-0#

PACS number~s!: 03.20.1i, 03.40.2t, 63.20.Ry

I. INTRODUCTION

In recent years there has been considerable effort in un-
derstanding the effects of discreteness on solitonlike solu-
tions @1–9#. In this work we will restrict ourselves to kink
solutions. Kinks connect two ground states of a chosen sys-
tem. Let us consider a nonlinear Klein-Gordon equation
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To allow for kink solutions the potentialV(z) has to have at
least two degenerate minima. Throughout this paper we will
consider only static solutions, i.e., the fieldF will not be
time dependent. Then Eq.~1.1! is reduced to an ordinary
differential equation
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The phase space of~1.2! is two dimensional. A kink solution
corresponds to a heteroclinic orbit. This orbit connects the
two hyperbolic fixed points~the ground states! in phase
space. The invariant manifolds of these fixed points overlap,
according to the continuous translational symmetry of~1.1!,
or due to the existence of an integral of motion of~1.2!.

There exist different possibilities to modify the spatial
differentials in~1.2! into differences. The most common way
is to represent the differences in terms of interaction forces
between neighboring particlesXl andXl21
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HereXl5F(x5 l ), and l is an integer~without loss of gen-
erality the periodicity of the discrete chain is assumed to be
equal to one!. Equation~1.3! is a two-dimensional symplec-
tic map, similar to the standard map. In general the invariant
manifolds of different fixed points do not overlap anymore.
Instead they generally intersect in heteroclinic points at non-
zero angles. The iteration of a heteroclinic point is again a

heteroclinic point. One can then consider different sequences
of heteroclinic points~let us call them heteroclinic orbits!.
All of these orbits will be exponentially attracted to the two
fixed points for sufficiently large absolute values ofl . Ex-
actly two of these orbits correspond to kink solutions, and
are thus related to their counterparts of the differential equa-
tion ~1.2!. However these two orbits have different energies
~in contrast to the differential equation case!. The energy
difference is called a Peierls-Nabarro barrier.

Let us note that there exist also choices of the difference
operator such that the invariant manifolds still overlap@11#.
In that nongeneric case static kink solutions exist, which can
be positioned at any place on the lattice. However, the dif-
ference operators are rather unphysical, and we will not con-
sider these nongeneric cases here.

So far different methods have been developed in order to
understand the effect of discreteness in principle. A recent
approach is due to T. Munakata who used the method of
constraint @10#. Up to now all these methods have not
yielded analytical solutions. To obtain say a kink profile nu-
merical tools are used. In this paper we will demonstrate that
a simple method known as the time-averaging method is
capable of finding analytical expressions for kink shapes in a
well-defined perturbation approach.

In the limit C→` the two kink-type heteroclinic orbits of
~1.3! approach their counterparts of~1.2!. This is due to the
fact, that large values ofC imply slow variations of these
solutions as compared to the lattice spacing. Consequently it
is tempting to use a perturbation approach, which links the
kink solutions of~1.2! with the adjoint solutions of~1.3!. In
this paper we will present a first-order perturbation calcula-
tion for the heteroclinic orbits of~1.3!. In Sec. II the differ-
ence equation~1.3! is transformed into a differential equation
with spatially modulated densities. This differential equation
is analyzed in Sec. III with the help of separation into slow
and fast variables, such that analytical expressions for the
kink solutions of~1.3! ~in the first-order perturbation theory!
are obtained. In Sec. IV we apply our method to two model
cases and derive explicit expressions for the kink solutions.
Section V is devoted to a discussion of the calculation of the
Peierls-Nabarro energy.

II. REFORMULATION OF THE PROBLEM

Let us consider the following differential equation:
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HereA,x means~partial! derivative ofA with respect tox,
andV8 is the derivative of the potentialV(z).

If we chooser(x)51, we obtain~1.2!. If we choose

r~x!5 (
l52`

1`

d~x2 l ! ~2.2!

we obtain~1.3! @12#. This is easy to see by the following
reasons. First we note thatF ,xx@ l,x,( l11)#50 or
F ,x@ l,x,( l11)#5const. Thus it follows

F~ l11!2F~ l !5F ,x~ l10.5!. ~2.3!

By integrating~2.1! from x5 l20.5 to x5 l10.5 and using
~2.2! we obtain

C@F ,x~ l10.5!2F ,x~ l20.5!2V8~F~ l !#50. ~2.4!

Combining ~2.3! and ~2.4! we arrive at Eq.~1.3!, where
F( l )5Xl . In other words, the fieldF(x) is given by straight
lines connecting its values at integerx5 l , the fieldF ,x is
given by a function with finite steps at integerx5 l and con-
stant elsewhere, andF ,xx is a sum overd functions, with
weights given by~2.1! using ~2.2!.

It is clear that one can make a continuous transition from
~2.2! to ~2.3! by varyingr(x) from r(x)51 to ~2.2!.

We rewrite~2.2! into

r~x!5 (
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d~x2 l !5112(
k51

`

cos~2pkx!. ~2.5!

Thus we finally arrive at the following equation:

CF ,xx2F112(
k51

`

cos~2pkx!GV8~F!50. ~2.6!

Note that~2.6! is still an exact reformulation of~1.3!.

III. PERTURBATION APPROACH

Let us introduce new coordinatesx5ACT and
V52pAC. Then~2.6! becomes
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k51

`

cos~kVT!GV8~F!50. ~3.1!

In the limit of large values ofC the cosine terms in~3.1!
rapidly oscillate due to the increase inV. Thus we can apply
standard perturbation treatments using the separation of the
field F into slowF (s) and fastjk parts@13#
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Inserting~3.2! into ~3.1! and linearizing with respect to the
variablesjk we obtain
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k51
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FIG. 1. Discrete kink shape deviations from the kink solution of
the adjoint differential equation versus lattice sitel for the sine
Gordon chain withC510. Circles—exact resultdl ; crosses—first-
order perturbation resultf l . ~a! a50.5; ~b! a50.

FIG. 2. The normalized deviationD of the first-order perturba-
tion result f l from the exactdl versus C. Circles—a50.5,
crosses—a50.5.
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For the fast variables the leading order contribution yields

jk,TT52 cos~kVT!V8~F~s!!, ~3.4!

jk52
2

k2V2cos~kVT!V8~F~s!!. ~3.5!

Averaging ~3.3! over the periods of oscillation of the fast
variables and using~3.5! and(k51

` 1/k25p2/6 it follows

F ,TT
~s! 5Veff8 ~F~s!!, ~3.6!

Veff~z!5V~z!2
1

24C
@V8~z!#2. ~3.7!

Note that Eq.~3.6! is a simple differential equation, which
will be integrated for two examples in the following section.

Since we are interested in the solution of~3.1! at integer
points, the argumentskVT52pn with n being an integer in
~3.5!. The final solution of~3.1! to first order in 1/C is then
given by

F~ l !5F~s!~ l !2
1

12C
V8~F~s!!. ~3.8!

Actually ~3.8! contains also~incomplete! terms of order
1/C2. One can expand the solution in powers of 1/C and
extract the first-order term after solving along the given path.

IV. TWO EXAMPLES

A. Sine Gordon case

Let us consider

V~z!512cos~z!. ~4.1!

The kink solution of~1.2! is given by

F~c!~x1a!54 arctan~exAC!. ~4.2!

Let us consider the slow partF (s) of the first-order pertur-
bation. The effective potential~3.7! is given by

Veff8 ~z!5sin~z!2
1

24C
sin~2z!. ~4.3!

ConsequentlyF (s) is the solution of the double sine Gordon
equation and can be found in@14# ~note that there is an error
in Eq. ~3.7! of @14#—the sign of the power21/2 has to be
changed to11/2) or can be simply calculated by integration:

F~s!~x1a!52p22 arctanH S 12
1

12CD 1/2
3cosechF S 12

1

12CD 1/2 x

ACG J , x>0,

~4.4!

F~s!~x1a!522 arctanH S 12
1

12CD 1/2
3cosechF S 12

1

12CD 1/2 x

ACG J , x<0.

~4.5!

Herea is an integration constant. Using Eq.~3.8! and ex-
panding in 1/C we finally obtain the following first-order
perturbation correction for the discrete sine Gordon chain:

FIG. 3. Same as in Fig. 1 but for theF4 chain andC515.

FIG. 4. Same as in Fig. 2 but for theF4 chain.
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F~ l !5Fc~x1a!1
1

6C
sechS x1a

AC D
3F2tanhS x1a

AC D 2
x1a

AC G . ~4.6!

Since the invariant manifolds of the two relevant fixed points
of ~1.3! do not overlap, but only intersect at finite angles, we
have to choose the right values ofa. Clearly they are
a50 anda50.5, which correspond to a kink centered on a
lattice site and between two lattice sites respectively. These
two possible kink solutions are known to exist for the map
~1.3! @1–10#.

In order to test our result we compute the exact kink so-
lutions of ~1.3! with ~4.1! for different values ofC. We use
the steepest gradient method~minimization of the potential
energy! and work in quadruple precision. The result will be
denoted asXl . The deviationsdl from its adjoint solution
~4.2! of ~1.2! is then given bydl5Xl2Fc( l ). The perturba-
tion approach yieldsf( l )5F( l )2Fc( l ) and is defined by
the second term on the right-hand side of~4.6!. In Fig. 1 we
plot dl andf l for C510 for both kink solutions (a50 and
a50.5). Clearly the perturbation result fits well to the exact
one. In order to be more precise, we calculate the normalized
squared deviationD of the perturbation result from the exact
one

D5
( l52`

1` ~dl2f l !
2

( l52`
1` dl

2 . ~4.7!

Now we can evaluateD for different values ofC and see,
whether it is monotonously decreasing with increasingC.
The results for both kink solutions are shown in Fig. 2. No
doubt the perturbation theory gives the correct first-order re-
sult.

B. F4 case

The second example is given by

V~z!5 1
4 ~z221!2. ~4.8!

The kink solution of~1.2! is given by

Fc~x1a!5tanhS x

A2CD . ~4.9!

The effective potential~3.7! reads

Veff~z!5
1

4
~z221!2F12

z2

6CG . ~4.10!

Thus the slow partF (s) is the solution of theF6 differential
equation. It can be easily integrated using@15#

F~s!~x1a!5

tanhS F12
1

6CG 1/2 x

A2CD
F12

1

6C
sech2SA12

1

6C

x

A2CD G 1/2.
~4.11!

Using ~3.8! we finally obtain the first-order perturbation re-
sult

F~ l !5F~s!~x1a!2
1

12C
F~s!~x1a!

3@F~s!~x1a!F~s!~x1a!21#. ~4.12!

As in the sine Gordon case we calculatedl andf l and plot
the results forC515 in Fig. 3. The normalized deviation
D(C) is plotted in Fig. 4. Clearly the perturbation theory
gives the correct result.

V. THE PEIERLS-NABARRO BARRIER PROBLEM
REVISITED

Considering the success of the presented perturbation ap-
proach with respect to the kink solutions, it is tempting to
use this result for calculating the Peierls-Nabarro barrier
EPN which is given by the energy difference of the two dif-
ferent kink solutions. However, as it was shown in@16#, one
has to expect that the leading order asymptotics ofEPN con-
tains contributions from all orders of the perturbation series
for the kink solutions for large values ofC. This is already
clear by noting that the zero-order result~i.e., replacing the
exact kink solution of the lattice by its counterpart of the
adjoint differential equation! yields a nonzeroEPN

(0) . As
shown in@16#, these contributions are not enough to fit the
exact numbers. Clearly at least the first-order perturbation
result for the discrete kink has to be taken into account
~yieldingEPN

(1)). But then it follows that contributions have to
be expected throughout all higher orders of perturbation
theory @16#. Since we have calculated the first-order correc-
tions to the kink shape, we can test these predictions.

Let us introduceR(1)5EPN
(1)/EPN and R(0)5EPN

(0)/EPN ,
which measure the ratio of the first-order energy difference

FIG. 5. The ratioR of the approximatedEPN over the exact one
as a function ofC. Open circles—zero order result for sine Gordon
chain; filled circles—first order perturbation result for sine Gordon
chain; open squares—zero order result forF4 chain; filled
squares—first-order perturbation result forF4 chain. Lines are
guides to the eye.
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~zero order, respectively! over the exact one. In Fig. 5 these
results are plotted for the two examples considered in the
preceding section. ClearlyR(1) is much closer to unity than
R(0), but still there exist discrepancies, which even grow
with increasingC. This circumstance implies that the contri-
butions from higher orders of the presented perturbation
theory inEPN gain more weight with increasingC.

VI. CONCLUDING REMARKS

We have derived first-order corrections to the kink shape
of a discrete chain. We used the methods of slow and fast
variables. The resulting differential equations can be inte-
grated explicitly, as demonstrated for two examples. Note
that the presented method can be generalized to the case of
anharmonic interactions as well as to time-dependent solu-
tions. The generalization of~2.1! gives

(
l

d~x2 l !F ,tt2
]2W

]y2 U
y5F ,x

F ,xx1(
l

d~x2 l !V8~F!50.

~6.1!

HereW(y) denotes the nearest neighbor interaction on the
discrete chain (y5Xl2Xl21), which could well be anhar-
monic. In the examples considered above we used only har-
monic interactions

W~y!5
1

2
Cy2

so that the second derivative in~6.1! simply yieldsC.
Using our results we have tested predictions from@16# on

the Peierls-Nabarro barrier dependence onC. It is worth-
while to note that for the sine Gordon chain there exists an
alternative splitting angle approach for the barrier problem
@17#. Those results confirm our findings on the problems of
conventional perturbation approach for the barrier value
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